Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain.

نویسندگان

  • Brian M Waters
  • Cristobal Uauy
  • Jorge Dubcovsky
  • Michael A Grusak
چکیده

The NAM-B1 gene is a NAC transcription factor that affects grain nutrient concentrations in wheat (Triticum aestivum). An RNAi line with reduced expression of NAM genes has lower grain protein, iron (Fe), and zinc (Zn) concentrations. To determine whether decreased remobilization, lower plant uptake, or decreased partitioning to grain are responsible for this phenotype, mineral dynamics were quantified in wheat tissues throughout grain development. Control and RNAi wheat were grown in potting mix and hydroponics. Mineral (Ca, Cu, Fe, K, Mg, Mn, P, S, and Zn) and nitrogen (N) contents of organs were determined at regular intervals to quantify the net remobilization from vegetative tissues and the accumulation of nutrients in grain. Total nutrient accumulation was similar between lines, but grain Fe, Zn, and N were at lower concentrations in the NAM knockdown line. In potting mix, net remobilization of N, Fe, and Zn from vegetative tissues was impaired in the RNAi line. In hydroponics with ample nutrients, net remobilization was not observed, but grain Fe and Zn contents and concentrations remained lower in the RNAi line. When Fe or Zn was withheld post-anthesis, both lines demonstrated remobilization. These results suggest that a major effect of the NAM genes is an increased efflux of nutrients from the vegetative tissues and a higher partitioning of nutrients to grain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microwave Synthesis of Fe2 O3 and ZnO Nanoparticles and Evaluation Its Application on Grain Iron and Zinc Concentrations of Wheat (Triticum aestivum L.) and their Relationships to Grain Yield

Fe2O3 and ZnO nanoparticles were synthesized by a fast microwave method. Nanostructures were characterized by X-ray diffraction  and scanning electron microscopy. The goal of bio-fortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. The micronutrients magnesium (Mg), manganese (Mn) and copper (Cu), boron (B) and calcium (Ca) are essen...

متن کامل

Mapping QTLs related to Zn and Fe concentrations in bread wheat (Triticum aestivum) grain using microsatellite markers

Mineral nutrient malnutrition, particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Biofortification of food crops is the best approach for conciliating the micronutrient deficiencies. Understanding the genetic basis of their accumulation is the preconditions for enhancing of these micronutrients. In our study, a mapping population of a set of 118 recombinant inbr...

متن کامل

Depth of nitrogen fertiliser placement affects nitrogen accumulation, translocation and nitrate-nitrogen content in soil of rainfed wheat

A field experiment was conducted to examine the effects of different depths ofnitrogen (N) fertiliser placements on N accumulation, remobilisation and NO3−-Ncontent in soil of rainfed wheat. Nitrogen was applied on the surface (D1) and inthe 10 cm (D2), 20 cm (D3) and 30 cm (D4) soil layers from 2010 to 2012.Compared with D1 and D2, D3 and D4 treatments obtained significant higher Ndistribution...

متن کامل

Effect of zinc sulfate application on grain yield of bread wheat (Triticum aestivum L.) cv. Chamran under terminal heat stress conditions in Ahvaz

To study the effect of zinc sulfate rates on response of bread wheat cv. Cahmran to terminal heat stress conditions in Ahvaz, Iran, this experiment was conducted at the research farm of Agricultural and Natural Resources Sciences University of Khuzestan, Iran in two cropping cycles (2015-2016 and 2016-2017). The experimental design was split plot arrangements in randomized complete block design...

متن کامل

Effect of Zn deficiency stress on expression pattern of genes encoding bZIP4, bZIP79 and bZIP97 transcription factors in bread wheat (Triticum aestivum L.) cultivars

A factorial experiment (based on completely randomized design) with three replications was conducted in faculty of agriculture of Urmia University, Iran in 2016 to investigate the effect of soil Zn deficiency on the expression of genes encoding bZIP4, bZIP79 and bZIP97 transcription factors in Zn-efficient and Zn-inefficient bread wheat cultivars. Cv. Bayat (Zn-efficient) and cv. Hirmand (Zn-in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 60 15  شماره 

صفحات  -

تاریخ انتشار 2009